These are the largest Mersenne numbers with no factors below
2^32 In NewPGen 2.82 and GIMPS. To my understanding,
GIMPS can only test up to the binary exponent of 9 digits with
its current settings. There's about a 1 in a billion chance that
one of them is prime: 2^(Prime Number)-1
1 2^999,999,937-1 301,029,977
2 2^999999929-1 301029975
3 2^999999893-1 301029964
4 2^999999883-1 301029961
5 2^999999797-1 301029935
6 2^999999761-1 301029924
7 2^999999757-1 301029923
8 2^999999751-1 301029921
9 2^999999739-1 301029918
10 2^999999733-1 301029916
11 2^999999677-1 301029899
12 2^999999667-1 301029896
13 2^999999613-1 301029880
14 2^999999607-1 301029878
15 2^999999599-1 301029875
16 2^999999587-1 301029872
17 2^999999541-1 301029858
18 2^999999527-1 301029854
19 2^999999503-1 301029847
20 2^999999491-1 301029843
21 2^999999487-1 301029842
22 2^999999433-1 301029825
23 2^999999391-1 301029813
24 2^999999353-1 301029801
25 2^999999337-1 301029797
26 2^999999323-1 301029792
27 2^999999229-1 301029764
28 2^999999223-1 301029762
29 2^999999197-1 301029754
30 2^999999193-1 301029753
Note: 999,999,191 is prime. 2^999,999,191-1 has a factor
of 1,999,998,383 in NewPGen. It would have been
301,029,753 digits if it had no apparent factor.
31 2^999999181-1 301029750
32 2^999999163-1 301029744
33 2^999999151-1 301029741
34 2^999999137-1 301029736
35 2^999999131-1 301029735
36 2^999999113-1 301029729
37 2^999999107-1 301029727
38 2^999999103-1 301029726
39 2^999999067-1 301029715
40 2^999999059-1 301029713
41 2^999999043-1 301029708
42 2^999999029-1 301029704
43 2^999999017-1 301029700
44 2^999999001-1 301029695
45 2^999998981-1 301029689
46 2^999998971-1 301029686
47 2^999998959-1 301029683
48 2^999998957-1 301029682
49 2^999998929-1 301029674
50 2^999998921-1 301029671
These were tested by Matt Stath in March and April 2013.
Thanks to Paul Jobling, who developed NewPGen 2.82.
Back to Top Secret Top 50 Primes.