These are the largest Mersenne
numbers with no factors below 2^32 In NewPGen 2.82 and GIMPS. To my understanding, GIMPS can only test up to the binary exponent of 9 digits with its current settings. There's about a 1 in a billion chance that one of them is prime: 2^(Prime Number)-1 |
||
1 | 2^999,999,937-1 | 301,029,977 |
2 | 2^999999929-1 | 301029975 |
3 | 2^999999893-1 | 301029964 |
4 | 2^999999883-1 | 301029961 |
5 | 2^999999797-1 | 301029935 |
6 | 2^999999761-1 | 301029924 |
7 | 2^999999757-1 | 301029923 |
8 | 2^999999751-1 | 301029921 |
9 | 2^999999739-1 | 301029918 |
10 | 2^999999733-1 | 301029916 |
11 | 2^999999677-1 | 301029899 |
12 | 2^999999667-1 | 301029896 |
13 | 2^999999613-1 | 301029880 |
14 | 2^999999607-1 | 301029878 |
15 | 2^999999599-1 | 301029875 |
16 | 2^999999587-1 | 301029872 |
17 | 2^999999541-1 | 301029858 |
18 | 2^999999527-1 | 301029854 |
19 | 2^999999503-1 | 301029847 |
20 | 2^999999491-1 | 301029843 |
21 | 2^999999487-1 | 301029842 |
22 | 2^999999433-1 | 301029825 |
23 | 2^999999391-1 | 301029813 |
24 | 2^999999353-1 | 301029801 |
25 | 2^999999337-1 | 301029797 |
26 | 2^999999323-1 | 301029792 |
27 | 2^999999229-1 | 301029764 |
28 | 2^999999223-1 | 301029762 |
29 | 2^999999197-1 | 301029754 |
30 | 2^999999193-1 | 301029753 |
Note: 999,999,191 is prime. 2^999,999,191-1 has a factor of 1,999,998,383 in NewPGen. It would have been 301,029,753 digits if it had no apparent factor. | ||
31 | 2^999999181-1 | 301029750 |
32 | 2^999999163-1 | 301029744 |
33 | 2^999999151-1 | 301029741 |
34 | 2^999999137-1 | 301029736 |
35 | 2^999999131-1 | 301029735 |
36 | 2^999999113-1 | 301029729 |
37 | 2^999999107-1 | 301029727 |
38 | 2^999999103-1 | 301029726 |
39 | 2^999999067-1 | 301029715 |
40 | 2^999999059-1 | 301029713 |
41 | 2^999999043-1 | 301029708 |
42 | 2^999999029-1 | 301029704 |
43 | 2^999999017-1 | 301029700 |
44 | 2^999999001-1 | 301029695 |
45 | 2^999998981-1 | 301029689 |
46 | 2^999998971-1 | 301029686 |
47 | 2^999998959-1 | 301029683 |
48 | 2^999998957-1 | 301029682 |
49 | 2^999998929-1 | 301029674 |
50 | 2^999998921-1 | 301029671 |
These were tested by Matt Stath in March and April 2013. Thanks to Paul Jobling, who developed NewPGen 2.82. Back to Top Secret Top 50 Primes. |