These are the largest Mersenne
numbers with no factors below 2^32 In NewPGen 2.82. There's about a 1 in a billion chance that one of them is prime: 2^(Prime Number)-1 |
||
Rank # | Equation | Digits |
1 | 2^4,294,967,291-1 | 1,292,913,985 |
2 | 2^4294967279-1 | 1292913982 |
3 | 2^4294967231-1 | 1292913967 |
4 | 2^4294967197-1 | 1292913957 |
5 | 2^4294967189-1 | 1292913955 |
6 | 2^4294967161-1 | 1292913946 |
7 | 2^4294967143-1 | 1292913941 |
8 | 2^4294967111-1 | 1292913931 |
9 | 2^4294967087-1 | 1292913924 |
10 | 2^4294967029-1 | 1292913907 |
11 | 2^4294966997-1 | 1292913897 |
12 | 2^4294966981-1 | 1292913892 |
13 | 2^4294966943-1 | 1292913881 |
14 | 2^4294966927-1 | 1292913876 |
15 | 2^4294966909-1 | 1292913870 |
16 | 2^4294966877-1 | 1292913861 |
17 | 2^4294966829-1 | 1292913846 |
18 | 2^4294966813-1 | 1292913842 |
19 | 2^4294966769-1 | 1292913828 |
20 | 2^4294966667-1 | 1292913798 |
21 | 2^4294966661-1 | 1292913796 |
22 | 2^4294966657-1 | 1292913795 |
23 | 2^4294966651-1 | 1292913793 |
24 | 2^4294966639-1 | 1292913789 |
25 | 2^4294966619-1 | 1292913783 |
26 | 2^4294966591-1 | 1292913775 |
27 | 2^4294966583-1 | 1292913772 |
28 | 2^4294966553-1 | 1292913763 |
29 | 2^4294966477-1 | 1292913740 |
30 | 2^4294966447-1 | 1292913731 |
31 | 2^4294966441-1 | 1292913730 |
32 | 2^4294966427-1 | 1292913725 |
33 | 2^4294966373-1 | 1292913709 |
34 | 2^4294966367-1 | 1292913707 |
35 | 2^4294966337-1 | 1292913698 |
36 | 2^4294966297-1 | 1292913686 |
37 | 2^4294966243-1 | 1292913670 |
38 | 2^4294966237-1 | 1292913668 |
39 | 2^4294966231-1 | 1292913666 |
40 | 2^4294966217-1 | 1292913662 |
41 | 2^4294966187-1 | 1292913653 |
42 | 2^4294966177-1 | 1292913650 |
43 | 2^4294966163-1 | 1292913646 |
44 | 2^4294966153-1 | 1292913643 |
45 | 2^4294966129-1 | 1292913636 |
46 | 2^4294966121-1 | 1292913633 |
47 | 2^4294966099-1 | 1292913627 |
48 | 2^4294966087-1 | 1292913623 |
49 | 2^4294966073-1 | 1292913619 |
50 | 2^4294966043-1 | 1292913610 |
These were tested by Matt Stath in January 2013. Thanks to Paul Jobling, who developed NewPGen 2.82. Back to Top Secret Top 50 Primes. |